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ABOUT AMMOS AND ADS

INTRODUCTION

▸ Multi-Mission Operations and Services Office (MGSS) produces a multi-mission 
Ground Data System known as AMMOS 

▸ Used on many NASA missions primarily utilizing the Deep Space Network 

▸ The Automated Deployment System is a new capability of AMMOS 

▸ Service to automate deployment/configuration of AMMOS components to 
mission environment 

▸ One of the first AMMOS capabilities to leverage agile development practices
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A LITTLE BIT ABOUT THE ORGANIZATION

BACKGROUND

▸ ADS developed in a large (primarily plan-driven) software organization, rooted 
in: 

▸ Legacy Software 

▸ Legacy Process 

▸ A long product lifecycle and funding plan 

▸ A very extensive, growing list of mission customers 

▸ A bold plan for modernization
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THE NEED TO MODERNIZE

WHY AGILE?

▸ We are designing new applications and modernizing/improving existing 
applications 

▸ Our customer base is expanding (and they have opinions as well as requirements!) 

▸ Other important factors 

▸ The application space 

▸ The technology space 

▸ The talent space
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EARLY CHALLENGES

EARLY ATTEMPTS AT AGILE

▸ Early attempts at integrating agile practices (e.g. scrum) into MGSS tasks proved challenging 

▸ Although benefits were often realized…. 

▸ Stakeholders were more engaged in the design process 

▸ More creative solutions and productive development team 

▸ …the funding organization often felt detached…. 

▸ Difficult to tell what the final product would evolve into 

▸ The plan driven process simply couldn’t absorb an agile process en masse 

▸ Difficult to communicate plans to sponsor 

▸ Too much, too soon?  Agile is a culture change that requires some adaptation.
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BUILDING ADS

KEY DRIVERS FOR AGILE PROCESS

▸ ADS team wished to engage stakeholders in the evolution of the product 

▸ User interface is web-based 

▸ Lends itself to close coordination with users 

▸ Bring together stakeholders who rarely interact, yet have significant, inconspicuous interdependencies 

▸ Configuration management 

▸ End users 

▸ Other institutional projects were having success with agile methodologies 

▸ Plenty of support available (tools and teams) 

▸ But how would we remain agile enough yet meet the needs of a plan-driven organization?
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BRIDGING THE GAP

ADAPTING AGILE PRINCIPLES IN PLAN-DRIVEN PROCESS

▸ Provide high level details to program management sufficient to know what to 
expect prior to beginning development 

▸ High-level operations concepts 

▸ Early requirements (corollaries to scrum ‘epics’) 

▸ Once these details are agreed to….. 

▸ Proceed with scrum cycle as planned, with some exceptions 

▸ Large changes of scope are still subject to formal approval (change requests)
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SEPARATE THE ‘RELEASE CYCLE’ PROCESS FROM THE TECHNICAL DETAILS

THE ‘TECHNICAL PLAN’

▸ Work Implementation Plan (WIP) focuses on detailing the release cycle schedule, workforce allocation, process, and gate 
reviews 

▸ A reduced-scope version of the plan-driven WIP 

▸ A ‘Technical Plan’ (ADS parlance) details technical goals for the release, without committing to low-level deliverables.  This 
includes: 

▸ Techical drivers 

▸ Major new work planned 

▸ Usually described in an expository format; may include early technical design artifacts for descriptive effect 

▸ Defects to be corrected, if known 

▸ Proposed requirements (high-level, traces to new work or defect corrections planned) 

▸ This plan is formally reviewed; approval authorizes the task to proceed
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DURING DEVELOPMENT

HOW CHANGES ARE CAPTURED FOR EACH RELEASE

Program Parlance ADS scrum Parlance

Major deliverables committed 
to prior to a release cycle Draft Requirements Epics

Major deliverables added 
during a release cycle Change Requests new Epics

Minor deliverables added 
during a release cycle (not required per agreement) User Stories (tracing to Epics)
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KEEPING TABS ON THE DEVELOPERS….

ENGINEERING ARTIFACTS DURING DEVELOPMENT

▸ The existing plan-driven process typically requires the following to be frozen prior to development of a release: 

▸ Software Requirements Document (SRD) 

▸ Software Design Document (SDD) 

▸ However, during the ADS scrum process, these are incrementally released during each sprint (as appropriate) 

▸ Epics as software requirements (export from JIRA) 

▸ Design artifacts in SysML (MagicDraw) 

▸ SDD is automatically updated/generated based on model inputs 

▸ Artifacts frozen prior to subsystem test 

▸ These go through normal review and approval process 

▸ A formality; nothing should come as a surprise to the reviewer if they were keeping up with sprint reviews!!!
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TYPICAL PLANNING AND ENGINEERING ARTIFACTS DURING VERSION LIFECYCLE
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HOW DID IT GO?

RECEPTION

▸ The hybrid waterfall/agile approach was well received 

▸ The sponsor knew what they were getting from the beginning 

▸ …but acknowledged that the design was iterative….. 

▸ The user had input into the development process 

▸ Everyone had better insight into task status at any given moment 

▸ Developers were much happier!!
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CONTINUOUS IMPROVEMENT

SCRUM LESSONS LEARNED

▸ Identifying key decision makers (often beyond formal authority) early in the process is very 
important 

▸ Always seek compromise! 

▸ Agile requires a culture shift, which doesn't happen overnight 

▸ Realize that there is no ‘one way forward’; much progress can be made with a hybrid 
approach 

▸ Retrospective is very valuable 

▸ Agile processes often encourage this, however it needs to go beyond just the core team



QUESTIONS?


